Knowledgebase
Speed test - iperf
Posted by RENCAL ADMIN IT on 2015 April 15 01:20 AM

Az iperf teszt során arra kérnénk Önt, hogy csatlakoztasson egy laptopot/pc-t közvetlenül az átadási pontra a megfelelő IP beállításokkal.

Le kell tölteni az iperf nevű programot, és egyetlen PC—vel vagy Laptoppal, a belső hálózatot leválasztva  elvégezni a mérést.

 


Iperf for Windows 2000, XP, 2003, Vista, 7, 8 and Windows 10 :

Iperf 2.0.5-3(1421k)

Iperf for Linux x86 32 bits (i386) :

  • Iperf 2.0.5-2 - DEB package (53k)
  • Iperf 2.0.5-2 simple installation: copy / paste this line into a terminal : wget https://iperf.fr/download/iperf_2.0.5/iperf_2.0.5-2_i386 ; chmod +x iperf_2.0.5-2_i386 ; sudo mv iperf_2.0.5-2_i386 /usr/bin/iperf

Iperf for Linux x86 64 bits (AMD64) :

  • Iperf 2.0.5-2 - DEB package (56k)
  • Iperf 2.0.5-2 simple installation: copy / paste this line into a terminal : wget https://iperf.fr/download/iperf_2.0.5/iperf_2.0.5-2_amd64 ; chmod +x iperf_2.0.5-2_amd64 ; sudo mv iperf_2.0.5-2_amd64 /usr/bin/iperf

Iperf for MacOS X :


 

Ezt követően a következő parancsot kell kiadni konzolos felületen, abból a mappából melyben az iperf.exe található:

 iperf – c IPCIM vagy HOSTNÉV –d –t 30 –i 10

A fenti parancs egy 30 másodperces egyidejű fel- letöltést végez, egy a szerverteremben elhelyezett szerverre.

Kérjük, hogy a teszt előtt egyeztessenek kollégáinkkal, mert el kell indítani a szerver oldali alkalmazást.

 


Command line optionEnvironment variable optionDescription
Client and Server options
-f, --format [bkmaBKMA] $IPERF_FORMAT A letter specifying the format to print bandwidth numbers in. Supported formats are 
    'b' = bits/sec            'B' = Bytes/sec
    'k' = Kbits/sec           'K' = KBytes/sec
    'm' = Mbits/sec           'M' = MBytes/sec
    'g' = Gbits/sec           'G' = GBytes/sec
    'a' = adaptive bits/sec   'A' = adaptive Bytes/sec
	
The adaptive formats choose between kilo- and mega- as appropriate. Fields other than bandwidth always print bytes, but otherwise follow the requested format. Default is 'a'. 
NOTE: here Kilo = 1024, Mega = 1024^2 and Giga = 1024^3 when dealing with bytes. Commonly in networking, Kilo = 1000, Mega = 1000^2, and Giga = 1000^3 so we use this when dealing with bits. If this really bothers you, use -f b and do the math.
-i, --interval # $IPERF_INTERVAL Sets the interval time in seconds between periodic bandwidth, jitter, and loss reports. If non-zero, a report is made every interval seconds of the bandwidth since the last report. If zero, no periodic reports are printed. Default is zero.
-l, --len #[KM] $IPERF_LEN The length of buffers to read or write. Iperf works by writing an array of len bytes a number of times. Default is 8 KB for TCP, 1470 bytes for UDP. Note for UDP, this is the datagram size and needs to be lowered when using IPv6 addressing to 1450 or less to avoid fragmentation. See also the -n and -t options.
-m, --print_mss $IPERF_PRINT_MSS Print the reported TCP MSS size (via the TCP_MAXSEG option) and the observed read sizes which often correlate with the MSS. The MSS is usually the MTU - 40 bytes for the TCP/IP header. Often a slightly smaller MSS is reported because of extra header space from IP options. The interface type corresponding to the MTU is also printed (ethernet, FDDI, etc.). This option is not implemented on many OSes, but the read sizes may still indicate the MSS.
-p, --port # $IPERF_PORT The server port for the server to listen on and the client to connect to. This should be the same in both client and server. Default is 5001, the same as ttcp.
-u, --udp $IPERF_UDP Use UDP rather than TCP. See also the -b option.
-w, --window #[KM] $TCP_WINDOW_SIZE Sets the socket buffer sizes to the specified value. For TCP, this sets the TCP window size. For UDP it is just the buffer which datagrams are received in, and so limits the largest receivable datagram size.
-B, --bind host $IPERF_BIND Bind to host, one of this machine's addresses. For the client this sets the outbound interface. For a server this sets the incoming interface. This is only useful on multihomed hosts, which have multiple network interfaces. 

For Iperf in UDP server mode, this is also used to bind and join to a multicast group. Use addresses in the range 224.0.0.0 to 239.255.255.255 for multicast. See also the -T option.

-C, --compatibility $IPERF_COMPAT Compatibility mode allows for use with older version of iperf. This mode is not required for interoperability but it is highly recommended. In some cases when using representative streaming you could cause a 1.7 server to crash or cause undesired connection attempts.
-M, --mss #[KM} $IPERF_MSS Attempt to set the TCP maximum segment size (MSS) via the TCP_MAXSEG option. The MSS is usually the MTU - 40 bytes for the TCP/IP header. For ethernet, the MSS is 1460 bytes (1500 byte MTU). This option is not implemented on many OSes.
-N, --nodelay $IPERF_NODELAY Set the TCP no delay option, disabling Nagle's algorithm. Normally this is only disabled for interactive applications like telnet.
-V (from v1.6 or higher) . Bind to an IPv6 address
Server side:
$ iperf -s -V 

Client side:
$ iperf -c <Server IPv6 Address> -V
 

Note: On version 1.6.3 and later a specific IPv6 Address does not need to be bound with the -B option, previous 1.6 versions do. Also on most OSes using this option will also respond to IPv4 clients using IPv4 mapped addresses.
Server specific options
-s, --server $IPERF_SERVER Run Iperf in server mode.
-D (from v1.2 or higher) . Run the server as a daemon (Unix platforms)
On Win32 platforms where services are available, Iperf will start running as a service.
-R (only for Windows, from v1.2 or higher) . Remove the Iperf service (if it's running). 
-o (only for Windows, from v1.2 or higher) . Redirect output to given file. 
-c, --client host $IPERF_CLIENT If Iperf is in server mode, then specifying a host with -c will limit the connections that Iperf will accept to the host specified. Does not work well for UDP.
-P, --parallel # $IPERF_PARALLEL The number of connections to handle by the server before closing. Default is 0 (which means to accept connections forever).
Client specific options
-b, --bandwidth #[KM] $IPERF_BANDWIDTH The UDP bandwidth to send at, in bits/sec. This implies the -u option. Default is 1 Mbit/sec.
-c, --client host $IPERF_CLIENT Run Iperf in client mode, connecting to an Iperf server running on host.
-d, --dualtest $IPERF_DUALTEST Run Iperf in dual testing mode. This will cause the server to connect back to the client on the port specified in the -L option (or defaults to the port the client connected to the server on). This is done immediately therefore running the tests simultaneously. If you want an alternating test try -r.
-n, --num #[KM] $IPERF_NUM The number of buffers to transmit. Normally, Iperf sends for 10 seconds. The -n option overrides this and sends an array of len bytes num times, no matter how long that takes. See also the -l and -t options.
-r, --tradeoff $IPERF_TRADEOFF Run Iperf in tradeoff testing mode. This will cause the server to connect back to the client on the port specified in the -L option (or defaults to the port the client connected to the server on). This is done following the client connection termination, therefore running the tests alternating. If you want an simultaneous test try -d.
-t, --time # $IPERF_TIME The time in seconds to transmit for. Iperf normally works by repeatedly sending an array of len bytes for time seconds. Default is 10 seconds. See also the -l and -n options.
-L, --listenport # $IPERF_LISTENPORT This specifies the port that the server will connect back to the client on. It defaults to the port used to connect to the server from the client.
-P, --parallel # $IPERF_PARALLEL The number of simultaneous connections to make to the server. Default is 1. Requires thread support on both the client and server.
-S, --tos # $IPERF_TOS The type-of-service for outgoing packets. (Many routers ignore the TOS field.) You may specify the value in hex with a '0x' prefix, in octal with a '0' prefix, or in decimal. For example, '0x10' hex = '020' octal = '16' decimal. The TOS numbers specified in RFC 1349 are: 
    IPTOS_LOWDELAY     minimize delay        0x10
    IPTOS_THROUGHPUT   maximize throughput   0x08
    IPTOS_RELIABILITY  maximize reliability  0x04
    IPTOS_LOWCOST      minimize cost         0x02
    
	
-T, --ttl # $IPERF_TTL The time-to-live for outgoing multicast packets. This is essentially the number of router hops to go through, and is also used for scoping. Default is 1, link-local.
-F (from v1.2 or higher) . Use a representative stream to measure bandwidth, e.g. :- 
$ iperf -c <server address> -F <file-name>
-I (from v1.2 or higher) . Same as -F, input from stdin.
Miscellaneous options
-h, --help   Print out a summary of commands and quit.
-v, --version   Print version information and quit. Prints 'pthreads' if compiled with POSIX threads, 'win32 threads' if compiled with Microsoft Win32 threads, or 'single threaded' if compiled without threads.

 

//2015-04-15



Attachments 
 
 iperf-2.0.5-3-win32.zip (1.39 MB)
(0 vote(s))
Helpful
Not helpful

Help Desk